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1.1.1 Design Philosophy 
At present, design practice is based on one of three design philosophies: 
(1) allowable stress design, (2) load factor design, and (3) load and 
resistance factor design (LRFD).  This section provides the information 
on the development of a reliability based design code such as AASHTO 
LRFD specification.  The emphasis is placed on the definitions, formulas, 
the concept of limit states, statistical load models, and statistical 
resistance models needed for the code development.  This section 
should be helpful to structural designers and should broaden their 
perspective by considering reliability based LRFD design as an important 
dimension of bridge design.  However, a designer still can design bridges 
based on the LRFD codes without knowing structural reliability analysis 
background as described in this section. 

1.1 Allowable Stress Design (ASD): 
In ASD, it is ensured that the stresses in a structure under working or 
service loads do not exceed designated allowable values.  The allowable 
values are obtained by dividing the yield stress or ultimate stress of the 
material by a factor of safety.  The general format for an allowable stress 
design is: 
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Where: 

nR  = nominal resistance of the structural member      
expressed in units of stress 

niQ  = nominal working or service stresses computed under    
working loads due to load type i . 

..SF  = factor of safety 
i  = type of load (i.e., dead load, live load, wind load, etc.) 
m  = number of load types 

 
The left-hand side of Equation (1) represents the allowable stress of the 
structural member or component under a given loading condition (e.g., 
tension, compression, bending, or shear).  The right-hand side of the 
equation represents the combined stress produced by various load 
combinations (e.g., dead, live, or wind load).  One should realize that in 
allowable stress design, the factor of safety is applied only to the 
resistance term, and safety is evaluated at the service load.  Thus, ASD 
is characterized by the use of unfactored “working” loads in conjunction 
with a single factor of safety applied to the resistance.  Because of the 
greater variability and unpredictability of the live load and other loads in 
comparison with the dead load, a uniform reliability is not possible with 
ASD. 
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1.2 Load Factor Design (LFD):  
 
In LFD (with load factors), it is ensured that factored load combinations 
do not exceed the maximum required strength of the structure or 
component. 
 
It takes the form: 

 

niin Q
i

m
R γ

1=
∑≥       (2) 

 
Where: 

nR  = nominal required strength of the member (such as plastic    
moment strength) 

nQ  = nominal load effect (e.g., axial force, shear force, bending    
moment) 

iγ   = load factor (For example: 1.3 for dead load and 2.17 for live 
load) 

i  = type of load (D = dead load, L = live load, W = wind load, 
etc.) 

m  = number of load types 
 
Note that in this method, safety is incorporated only in the load term and 
is evaluated at the required limit state.  Applying a factor of safety to the 
load term is more appropriate than ASD because uncertainty associated 
with loads is higher than that associated with resistances.  A uniform 
reliability cannot be fully achieved with LFD because only factors of 
safety (here called load factors) are applied to loads.   
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1.3 Load and Resistance Factor Design (LRFD): 
 
In LRFD, it is ensured that the factored load effects do not exceed the 
factored nominal resistance of the structural member or component.  
There are two safety factors: one applied to the loads, the other to the 
resistance.  This is a more rational approach because both the loads and 
the resistances have different uncertainties.  Thus, LRFD takes the form: 

φ niin Q
i

m
R γ

1=
∑≥      (3) 

Where: 

nR  = nominal resistance of the structural member 

nQ  = nominal load effect (e.g., axial force, shear force, bending 
moment) 

φ  = resistance factor (≤  1.0) (e.g., 0.9 for beams, 0.85 for 
columns) 

iγ  = load factor (usually > 1.0) corresponding to niQ  (e.g., 1.25D 
+ 1.75 (L+I)) 

i   = type of load (e.g., D = dead load, L = live load) 
m  = number of load type 

 
LRFD uses separate factors for each load and can therefore reflect the 
degree of uncertainty of different loads and combination of loads.  As a 
result, more uniform reliability can be achieved.  Uniform reliability 
means that individual structural members have the same probability of 
safety.  For bridges, the probability of safety of a member can be 
evaluated through reliability analysis.  Basically, the reliability analysis 
can be achieved by two techniques.  The first technique is called 
reliability (safety) index approach and the other is called Monte Carlo 
Simulation. 
 
In the current LRFD specifications, the resistance factors were 
developed mainly through a calibration in order to reach the target safety 
index, β , of 3.5  
 
In order to develop load and resistance factors for the new LRFD bridge 
codes, the work involved several steps: the development of statistical 
load models, statistical resistance model, reliability analysis procedure, 
selection of the target reliability index and calibration of the load and 
resistance factors for the code.  A brief description of the individual steps 
are described in Sections 1.1.6 through 1.1.9. 
 
The calibration of the load and resistance factors as described in Section 
1.1.9 can not be done without first completing the previous tasks 
described in Sections 1.1.6 through 1.1.8. Section 1.1.2 describes the 
fundamental probability theory.  Section 1.1.3 though 1.1.5 provide very 
important background to be used for the development of statistically load 
and resistance models and description of reliability analysis procedures. 
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1.1.2 Fundamental Probability Theory 
 

2.1 Definitions 
Sample Space – considering an experiment such as concrete cylinder 
test for measuring concrete ultimate stress, f’c, all the possible outcomes 
comprise a sample space.  Outcome of each trial is called a realization 
or a Sample Functions.  
 
Event – a range of outcomes is defined as an event. 
 
P( ) – The notation )(P  represents a probability function.  If E  

represents an event, and Ω represents a sample space, then =)(EP  
probability of event E  and =Ω)(P  the probability of an event 
corresponding to the entire sample space.  Therefore, 1)(0 ≤≤ EP  and 

1)( =ΩP . 
 
Mutually exclusive events – Two or more mutually exclusive events 
cannot occur simultaneously.  For n  mutually exclusive events 

,,...., 21 NEEE  

∑
==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ n

i
i

n

i
i EPEP

11

)(U  where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
U

n

i
iEP

1

 represents the probability of 

occurrence of 1E  or 2E  or …or .nE   For example, define 3 mutually 

exclusive events 
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Random Variables – A random variable is defined as a function that 
maps events onto intervals on the axis of real numbers.  For example; 
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So the random variable x  can have three discrete integer values (i.e. 1, 
2, and 3).  Then x  is called a discrete random variable.  A random 
variable can be a continuous random variable.  For example, let 

,')'( cfcfX = then an event psicf 3500' = corresponds to the 
random variable .3500)'( psicfX =  
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Probability Mass Function (PMF) P  Χ(χ) −  Let =Χ )(xP probability mass 
function that a discrete random variable Χ  is equal to a specific value 
x .  Therefore, ).()( xPxp =Χ=Χ   For example, let X  be a discrete 
random variable representing  concrete strength cf '  as defined in 

equation (1).  Assume the values of the probability mass function )(xPΧ  
as: 
 

1.0)3(
85.0)2(
05.0)1(

=
=
=

Χ

Χ

Χ

P
P
P

 

 
Figure 1.1.2.1 shows these three values of the probability mass function 

).(xPΧ  
 
Cumulative distribution Function (CDF) F  Χ(χ) − The total sum of all 
probability functions corresponding to values less than or equal to x .  

)()( xPxF ≤Χ=Χ  as shown in Figure 1.1.2.2.  )(xFΧ  is an increasing 
function of x . 

 
Figure 1.1.2.1 Probability Mass Functions 
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Figure 1.1.2.2 Cumulative Distribution Function 
 
Probability Density Function (PDF) fΧ(χ) − =Χ )(xf  Probability functions 
in which a continuous random variable Χ  is equal to a specific value x .  
In other words a, probability density function is the first derivative of the 
cumulative distributions function. 
 

)()( xF
dx
dxf ΧΧ =       (2) 

∫ ∞− ΧΧ =
x

dfxF ρρ)()(      (3) 

 
Figures 1.1.2.3 (a) and (b) represent typical PDF and CDF, respectively. 
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Figure 1.1.2.3: (a) PDF and (b) CDF. 
 
Equation (3) represents the shaded area under PDF as shown in Figure 
1.1.2.3 (a) when .ax =  
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2.2 Statistic Parameters 
The purpose of using the following statistic parameters is to describe the 
properties of any random variable. 
Mean value of a random variable X  denoted as Xµ :  

dxxfx XX )(∫
∞

∞−
=µ  for a continuous random variable 

 )( iXi xPx∑=  for a discrete random variable 

The above equations for Xµ  requires knowing the PDF of a particular 

random variable, .X   For a set of test data { },..., 21 nxxx  the mean Xµ  
can be estimated by 

 ∑
=

=
n

i
iX x

n 1

1µ  (4) 

Expected value of X denoted by )(XE :  XXE µ=)(  

Expected value of nX denoted by )( nXE : 

∫
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∞−
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nn )()(  

)( nXE is also called the nth moment of X   

Variance of X  denoted by 2
Xσ : 

∫
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∞−
−=−= dxxfxXE XXXX )()()( 222 µµσ  

The relationship among the mean, variance and second moment of a 
random variable X  is 

222 )( XX XE µσ −=  

Standard deviation of X  denoted by Xσ : 
2
XX σσ =  

For a set of test data, { },..., 21 nxxx  the standard deviation can be 
estimated by 
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Coefficient of variation denoted by XV : 

X

X
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µ
σ
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Standard form of X  denoted by Z : 
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Therefore the mean of the standard form of a random variable is 0 and 
its variance is 1. 
 
Conditional Probability: 
Given two events 1E  and 2E , the conditional probability of 1E  occurring 

if 2E has already occurred is defined as 

 ( ) ( )
( )2

21
21 EP

EEPEEP ∩
=  (1) 

The symbol ""∩  is called “intersection” and means that events 1E  and 

2E  occur simultaneously.  If two events are statistically independent, 
then the occurrence of one event has no effect on the other event, then 
equation (1) reduces to  
 ( ) ( ) ( ) ( ).212121 EPEEPandEPEEP ==   
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2.3 Common Random Variables 
Uniform Random Variables: 
A uniform random variable has all numbers that are equally likely to 
appear.  Therefore, the PDF has a constant value for all possible values 
of the random variable with a range [ ]ba, . 

 ( )
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⎧ ≤≤
−==

otherwise

bxa
abxfPDF X
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1

 

The mean and variance are 
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Figure 1.1.2.4: Uniform Random Variable – PDF and CDF 
 
Normal random variables: 
The PDF of a normal random variable X  is 
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The PDF and CDF of a normal random variable are shown in Figure 
1.1.2.5. 
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Figure 1.1.2.5 PDF and CDF of a normal random variable. 
 
Standard normal random variable Z : 
The PDF of a standard normal random variable Z is 

)()(
2
1exp

2
1)( 2 zfzz Z=⎥⎦

⎤
⎢⎣
⎡−=

π
φ  

The CDF of the standard normal random variable is typically denoted by 
)(zΦ   

The PDF and CDF of a standard normal random variable are shown in 

Figure 1.1.2.6.  From Section 1.1.2.2, 
X

XXZ
σ

µ−
= , therefore 

XX ZX σµ +=  
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Equation (1) means that the standard normal random variable, Z , can 
be used to obtained the CDF of an arbitrary normal random variable, X . 

 

Figure 1.1.2.6 PDF and CDF of a standard normal random variable 
 
Lognormal random variable: 
A random variable X  is lognormal if  

)ln(XY =  is a normal random variable. 
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If XV  is less than 0.2, then 
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The PDF of a lognormal random variable is shown in Figure 1.1.2.7. 
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Figure 1.1.2.7 PDF of a lognormal random variable. 
 
Random Vector: 
A set of random variables is called a random vector.  For example 

}...,,{ 321 nXXXX is a random vector with random variables of 

nXXX ,..., 21 .  Similar to the CDF and PDF of a random variable, the 
CDF and PDF of a random vector are called “joint cumulative distribution 
function” and “joint probability density function”, respectively.  The joint 
cumulative distribution function is defined as 
 ),...,,(),...,( 221121.....21 nnnXXX xXxXxXPxxxF

n
≤≤≤=  

 )...( 2211 nn xXxXxXP ≤∩∩≤∩≤=  (1) 
The joint probability density function is defined as  
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nXXX xxx
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∂
=  (2) 

For a random vector },,{ YX  
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and ∫
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 ∫
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= dxyxfxf XYY ),()(  

where )(xf X  and )(yfY  are called marginal probability density 
functions. 
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Also, the conditional distribution function for the random vector },{ YX is  

 ( ) ( )
( )yf

yxfyxf
Y

XY
X

,
=  (3) 

If the random variables X and Y are statistically independent as 
described in Section 1.1.2.2, equation (3) reduces to  
 )()(),( yfxfyxf YXXY =  (4) 
Covariance of Random Vectors: 
 The covariance of two random variables X and Y is defined as  
 ( )( )[ ]YX YXEYXCOV µµ −−=),(  

 ∫ ∫
∞

∞−

∞

∞−
−−= dxdyyxfyx XYYX ),())(( µµ  (5) 

 
Coefficient of Correlation: 
The coefficient of correlation between two random variables X  and Y is 
defined as  

 
YX

XY
YXCOV

σσ
ρ ),(

=  (6) 

and 11 ≤≤− XYρ  

XYρ shows the degrees of “linear” dependence between the two random 

variables X  and .Y   When ,0=XYρ it means that the random 
variables X  and Y are not linearly related to each other.  However, it 
doesn’t mean that X  and Y are statistically independent because X  
and Y may have a nonlinear relationship to each other. 
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2.4 Normal Probability Paper 
Normal probability paper can be constructed by redefining the vertical 
scale of the normal CDF so that the normal CDF will plot as a straight 
line.  Hence, the values on the vertical axis of a normal probability paper 
are not evenly spaced as shown in Figure 1.1.2.8. 

 

Figure 1.1.2.8 Construction of normal probability paper.  (a) normal 
CDF (b) probability paper 

 

In Section 1.1.2.2, the standard form of a normal random variable X  is 
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for any specific value of Z , z , 
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From Equation (1) in Section 1.1.2.3, the normal CDF can be expressed 
as 
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Inversely, Equation (3) leads to 
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By using z  as the vertical axis in Figure 1.1.2.8 (b), it can be seen that 
the values on this scale are evenly spaced.  The following formula can 
be used for evaluate z : 

 3
3

2
21

2
2101

1
)(

tdtdtd
tctcc
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where 
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for *)(;5.0 1 pzp −Φ−=>  in which ).1(* pp −=  

 

From experimental test results, the normal probability paper can be 
generated by the following steps: 

Let the data plotted include n  test results: ...., ,21 nxxx   It is assumed 

the values of nxx ,....1  are arranged in an increasing order.  Then, the 

first test result is plotted at the intersection of 1x  on the horizontal scale 

and probability 
)1(

1
1 +
=

n
p  on the vertical scale.  The ith  test result is 

plotted at the intersection of ix  and the probability, .
)1( +

=
n

ipi   It is 

convenient to replace ip  by the standard normal variable iz  using 

)(1
ii pz −Φ=  as described in Equation (5). 

 

Example: Consider a random variable, X , representing concrete 
cylinder test results.  Total number of test data (in terms of ksi) is 9.  
They are 4.6, 4.9, 5.0, 5.1, 5.1, 5.2, 5.2, 5.3, 5.5.  Use probability paper 
to evaluate the data statistically. 

 

Solution: Find the probability, ip , and standard normal variable, ,iz  of 

test data ix : 
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Table 1.1.2.1 

i  
ix  

1+
=

n
ipi  )(1

ii pz −Φ=  

1 

2 

3 

4 

5 

6 

7 

8 

9 

4.6 

4.9 

5.0 

5.1 

5.1 

5.2 

5.2 

5.3 

5.5 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

-1.282 

-0.842 

-0.524 

-0.253 

0 

0.253 

0.524 

0.842 

1.282 

 

From Table 1.1.2.1 the probability paper is generated and shown in 
Figure 1.1.2.9. 

 
Figure 1.1.2.9 Probability Paper 

 

For comparison, equations (4) and (5) in Section 1.1.2.2 are used to 
calculate the sample statistics Xµ  and Xσ .  They are 

∑
=

=++++++==
n

i
iX x

n 1
1.5)5.53.52.5*21.5*20.59.46.4(

9
11µ  
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From Figure 1.1.2.9, it can be seen that the data appear to follow a 
straight line.  Therefore the test results follow a normal distribution.  The 
dash line in the figure is plotted based on the Xµ  and Xσ  calculated 
above. 
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1.1.3 Applications of Random Variables 
 

3.1 Linear Functions of Random Variables 
If a random variable, Y , is a linear function of random variables 

;,..., 21 nXXX  

 ∑
=

+=++++=
n

i
iinn XaaXaXaXaaY

1
022110 ,...  

then the mean of Y is 

 ∑
=

+=
n

i
XiY i

aa
1

0 µµ  (1) 

and the variance of Y is 

 ( ) ][ 22
YY YE µσ −=  

        ∑∑
= =

=
n

i

n

j
XXXXji jiji

aa
1 1

σσρ  (2) 

If nXXX ,..., 21  are uncorrelated with each other, then 0=
ji XXρ  for 

ji ≠  and equation (2) reduces to 

 ∑
=

=
n

i
XiY i

a
1

222 σσ  (3) 

Example 1.1.3.1: A simply supported prestressed I-Girder is loaded with 
dead load (self weight + slab weight), DL , and a concentrated dead 
load (steel diaphragm) at center of the beam, P .  The allowable moment 
capacity at the mid-span of the girder is RM .  Girder span length is 53 

feet.  All three random variables of DL , P , and RM  are uncorrelated 
normal random variables with statistical parameters shown as follows:  

 

%12;1200

%15;3.0

%10;6.1

=−=

==

==

RR MM

PP

DLDL

Vfeetk

Vfeetk

Vfeetk

µ

µ

µ

 

what is the probability of failure of the girder?  
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Sol: Calculate the standard deviation of DL , P , and RM  

 

( )

)(14412.0*1200
)(045.015.0*3.0

16.01.0*6.1

feetkV
kipsV

feetkV

RRR MMM

PPP

DLDLDL

−==⋅=
==⋅=
==⋅=

µσ
µσ
µσ

 

The demand moment at the center of the girder is  

 
( )( ) )(25.13)(12.351

48

2

PDLPLLDLM +=+=  

 Let )(25.13)(12.351 PDLMMMY RR −−=−=  (a) 

Equation (a) shows that Y is a linear function of random variables RM , 
DL , and P . 
 
Therefore: 

 ∑
=

=
3

1i
XiY i

a µµ  

        
)(23.634)3.0)(25.13()6.1)(12.351(1200

25.1312.351

feetk
PDLM R

−=−−=

−−= µµµ
 

 ∑
=

=
3

1

222

i
XiY i

a σσ  

  222222 )045.0()25.13()16.0()12.351()144()1( ++=  
  )(5.23892 feetk −=  

 )(57.154 feetkY −=σ  
Thus, the probability of failure of girder is 

 ( ) ( )1.4
57.154
23.6340

0 −Φ=⎟
⎠
⎞

⎜
⎝
⎛ −Φ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
Φ=<

Y

YYP
σ
µ

 

From Table 1.1.4.1, ( ) .10*06.21.4 5−=−Φ=  
 



LRFD Bridge Design Guidelines 
Introduction – Section 1.1  Page: 3.1-3 

Applications of Random Variables 

New: June 2001  LRFD_DG001 

 



LRFD Bridge Design Guidelines 
Introduction – Section 1.1  Page: 3.2-1 

Applications of Random Variables 

New: June 2001  LRFD_DG001 

3.2 Nonlinear Functions of Random Variables 
If a random variable, Y , is a nonlinear function of random variables 

,,..., 21 nXXX  the mean and variance of Y can be calculated 
approximately by the following steps. 
 
Step 1: Use Taylor series expansion of Y to linearize the nonlinear 

function, Y , at a set of “design point values” 
 Nonlinear function )...,( 21 nXXXfY =  

 Linearized function ),...,( **
2

*
1 nxxxfY ≈  

  ∑
= ∂

∂
−+

n

i xxxati
ii

n
X
fxX

1 ),...,(

*

**
2

*
1

)(  (1) 

Step 2: If the nonlinearity of Y is not severe, the design points 
),...,( **

2
*
1 nxxx  may be approximately assumed to be the mean 

values of the random variables, i.e. ( ).,...,
21 nXXX µµµ  

Example 1.1.3.2.1: A 19”x12” beam with tension reinforcement area of  
24 in  is subjected to a demand moment .Q   The 

moment capacity of the beam is 

 ( )
.

'
59.0

'
59.0

2
2

cbf
fA

dfA

cbf
fA

dfAadfAM

ys
ys

ys
ysysR

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛ −=

 

 
The random variables are ,', cff y  and .Q   Their statistical parameters 
are as follows: 
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Let QMY R −=  
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Q
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dfA ys
ys −−=

'
59.0

2

 (1) 

Equation (1) represents the limit state function and it is a nonlinear 
function.  If ,0<Y  failure will occur.  Linearize equation (1) at the design 

points :),,( ' Qcff y
µµµ  
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Q
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f
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y
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µ
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∂

−+ )( µ
 evaluated at mean value 
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fcf cf '

)'( ' ∂
∂

−+ µ
 evaluated at mean value 
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fQ Q ∂
∂

−+ )( µ
 evaluate at mean value 
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 Q
cf

fys
fys b

A
dA µ

µ
µ

µ −−
'

2)(
59.0  

 ( )( )( ) ( ) ( )
( )( ) ink −=−−= 27.11923000

1216.4
66*0.459.019660.4

2
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1
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( ) ( )∑
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1

22222 93.604.51
i

XiiY a σσ  

  ( ) ( ) ( ) ( )2222 72.2680073605824.001.198 ink −=++  

 )(69.517 inkY −=∴σ  
Thus, from Table 1.1.4.1 the probability of failure of beam is 
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⎠
⎞

⎜
⎝
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⎝

⎛ −
Φ=<

69.517
36.11920

)0(
Y

YYP
σ
µ
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1.1.4 Structural Reliability Analysis 
 

4.1 Probability of Failure 
The basic structural reliability problem considers only one load effect Q  
resisted by the resistance R .  Both Q  and R are described by a known 

probability density function, ( )Qf  and ( )Rf , respectively.  A structural 

element will be considered to have failed if the resistance R  is less than 
the load resultant Q  acting on it.  The probability fP  of failure of a 
structural element can be stated in the following ways: 
 

)( QRPPf ≤=       (1a) 

      )0( ≤−= QRP      (1b) 

      )1( ≤=
Q
RP       (1c) 

or in general form 
      ]0),([ ≤= QRGP      (1d) 

 
Where ( )G  is termed the limit state function and the probability of 

failure is identical to the probability of limit state violation. ( )QRG , may 

be linear or nonlinear.  The probability density functions Rf , Qf  for R  

and Q  respectively are shown in Figure 1.1.4.1.  In figure 1.1.4.2, 
equation (1) is represented by the hatched failure domain D , so that the 
failure probability becomes: 
 

 
Figure 1.1.4.1 – PDF of load, resistance, and safety margin 
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Figure 1.1.4.2 - Region D  of integration for failure probability 
determination 

 
 

∫ ∫=≤−=
D RQf dqdrqrfQRPP ),()0(    (2) 

when R  and Q  are independent, )()(),( qfrfqrf QRRQ = so that 
equation (2) becomes: 

∫ ∫
∞

∞−

≥

∞
=≤−=

rQ

QRf dqdrqfrfQRPP )()()0(  (3) 

      drrfrF QR )()(∫
∞

∞−
=     (4) 

where )(rFR  is the cumulative probability of rR ≤ , or the probability 
that the actual resistance R  of the member is less than some limit state 
value r .  Current AASHTO LRFD design considers 4 different limit 
states.  They are 1) Service limit state, 2) Fatigue and Fracture limit 
state, 3) Strength limit state and 4) Extreme event limit state. 
 
From equations (2), (3), or (4), the probability of failure is calculated by 
integration of the joint density function over the failure domain (i.e. G<0).  
In general, it is very difficult to evaluate these integrals, especially when 
G=0 is nonlinear.  Therefore, in practice, the probability of failure is 
calculated indirectly using an other procedure called “Safety Index” to 
quantify structural reliability.  The safety index is described in the 
following section. 



LRFD Bridge Design Guidelines 
Introduction – Section 1.1  Page: 4.2-1 

Structural Reliability Analysis 

New: June 2001  LRFD_DG001 

 

4.2 Safety (Reliability) Index 
Figure 1.1.4.3 shows the top view of the Figure 1.1.4.2.  The contours of 
joint probability function RQf  may not be symmetric because the unit of 
measurement (such as standard deviation) of each random variable may 
be different (i.e. QR σσ ≠ ).  However if R  and Q  are transformed into 
two standard non dimensional forms (i.e. standard normal distribution 
with zero mean and unit variance) as 

 
R

R
R

RZ
σ
µ−

=  

 
Q

Q
Q

Q
Z

σ
µ−

=  

the Figure 1.1.4.3 transforms to Figure 1.1.4.4.  RZ  and QZ  are called 
“reduced variables”. 

 
Figure 1.1.4.3 Limit State Surface in the space of R  and Q . 
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Figure 1.1.4.4 Limit State Surface in the space of standardized  

QZ  and RZ  

The joint probability function 
RQZZf  is now a bivariate normal distribution 

and symmetrical about the origin.  From Figure 1.1.4.4, the probability of 
failure, fP , is equal to the integration of 

RQZZf  over the failure region 

along the V direction.  However, by well-known properties of the 
bivariate normal distribution, the integration of 

RQZZf along the V  

direction leads to a marginal standard normal distribution (see Figure 
1.1.4.4).  

Figure 1.1.4.4. indicates that  

 )( ff PP = marginal standard normal distribution ( )β−Φ=   (1) 

Equation (1) shows that the fP of equation (3) in Section 1.1.4.1 can be 
directly calculated by using standard normal distribution through 
reliability index β  (see Figure 1.1.4.4).  From Figure 1.1.4.4, it can be 
seen that the reliability index, β , is the shortest distance from the origin 

of RZ  and QZ  coordinates.  Thus 
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µµ
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+

−
=  (2) 

If R  and Q  are normally distributed random variables, then, the 
probability of failure is 

 ( ) ( ) ⎟⎟
⎠

⎞
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⎝

⎛ −
Φ=<=≤−=

G

G
f GPQRPP

σ
µ0

00  

 
( ) ( )β

σσ

µµ
−Φ=
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⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−−
Φ=

22

0

QR

QR  (3) 

or ( )
G

G
fP

σ
µ

β =Φ= −1  (4) 

The relationships between β  and fP  are shown in Table 1.1.4.1 

Table 1.1.4.1 Probability of Failure vs. β . 

Reliability Index β  Reliability ( )fPS −= 1  Probability of failure 
( )β−Φ=fP  

0.0 
0.5 
1.0 
1.5 
2.0 
2.2 
2.3 
2.5 
3.0 
3.5 
4.0 
4.1 
4.2 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

0.500 
0.691 
0.841 
0.9332 
0.9772 
0.9861 
0.98928 
0.99379 
0.99865 
0.999767 
0.9999683 
0.99997938 
0.99998668 
0.99999660 
0.999999713 
0.9999999810 
0.999999999013 
0.9999999999598 
0.99999999999872 
0.999999999999681 
0.99999999999999389 

0.500x10+0 

0.309x10+0 

0.159x10+0 

0.668x10-1 

0.228x10-1 

0.139x10-1 

0.1072x10-1 

0.621x10-2 

0.135x10-2 

0.233x10-3 

0.317x10-4 

0.2062x10-4 

0.1332x10-4 

0.340x10-5 

0.287x10-6 

0.190x10-7 

0.987x10-9 

0.402x10-10 

0.128x10-11 

0.319x10-13 

0.611x10-15 

 

Equation (2) only shows the reliability index of two uncorrelated random 
variables R  and Q . 

Consider a linear limit state function of the form 
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( ) ∑
=

+=+++=
n

i
iinnn XaaXaXaXaaXXXG

1
02211021 ...,...,,    (5) 

Where ( )niai ,...,1,0=  are constants and iX  are uncorrelated random 

variables.  The reliability index β  can be expressed as 

 

( )∑

∑

=

=

+
=

n

i
Xii

n

i
Xii

a

aa

1

2

1
0

σ

µ
β  (6) 

Equation (6) shows that the reliability index depends only on the means 
and standard deviations of the random variables.  There, β  is also 
called a second-moment reliability index.  Considering a nonlinear limit 
state function.  ( ),,..., 21 nXXXG  it can be linearized approximate by 

the Taylor series expansion at a design point ( )**
2

*
1 ,..., nXXX  along the 

0=G  curve. 

 ( ) ( )**
2

*
121 ,...,,..., nn XXXGXXXG ≈  (7) 

 

 ( ) ( )**
2

*
1 ,...,

1

*

nXXXatevaluated

n

i i
ii X

gXX∑
= ∂

∂
−+  

Once ( )nXXXg ,..., 21  is linearized by eq. (7), similar to eq.(5), the 

reliability index β  can be estimated as  

( )
( )∑

=

=
n

i
Xii

n

a

XXXg

1

2

**
2

*
1 ,...,

σ
β  where 

i
i X

Ga
2
2

=

( )**
2

*
1 ,...,

int
nXXX

podesign
atevaluated  

This can be illustrated by using two random variables R  and Q  as 
shown in Figure 1.1.4.5. 
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Figure 1.1.4.5 Design Point on the Failure Boundary 

The design point is a point on the limit state function 0=G  from which 
the shortest distance, β , to the origin of the reduced variable space 
occurs.  Since this design point is generally not known at this time, an 
integration technique called “Hasofer-Lind reliability index” must be used 
in order to find the location of the design point.  The Hasofer-Lind 
reliability index integration technique can be briefly described as follows: 

For n  random variables, solve ( )12 +n  simultaneous equations with 

( )12 +n  unknowns.  The unknowns are 

 **
2

*
121 ,...,,,...,, nn zzzαααβ  where 
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∂
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∂
∂
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∂
∂

 (9) 

 ( )∑
=

=
n

i
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1

2 1α  (10) 

 iiz βα=*  (11) 

 ( ) 0,..., **
2

*
1 =nzzzg  (12) 
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Equation (12) indicates that the design point ( )**
2

*
1 ,..., nzzz  is on the 

failure boundary 0=G . 

Example 1.1.4.2.1:  Find the reliability index of example 1.1.3.2.1 by 
Hasofer-Lind method. 

Solution:   

Define the limit state function: 

From example 1.1.3.2.1, the limit state function is: 

 ( ) ( )
0

'
7867.076

'
57.0

0
22

=−−=−−=

=−=

Q
cf

f
fQ

cbf
fA

dfA

QMG

y
y

ys
ys

R

 

 ( ) 0'7867.0'76 2 =−−=∴ cQffcffG yy  (1) 

The means and standard deviation of random variables are: 
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cfcf

fyfy
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Define the reduced variables 
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3603000
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QQ
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fyfyy
fy

fyy
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σ
µ
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σ

µ
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σ
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 (2) 

Substitute eq. (2) into eq. (1): 

 
[ ][ ] [ ]

[ ][ ] 05824.016.43603000
93.6667867.05824.016.493.66676

23

2
121

=++
−+−++

ZZ
ZZZ

 

 
07.4959664.209

74.30678.376.149712.117436.1471

32

21
2
1321

=+−
+−−+⇒

ZZ
ZZZZZZ

 

3) Formulate g in terms of β  and iα : 

 iZ βα=*
1  
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07.4959664.20974.306

78.376.149712.117436.1471

32
2

21
2
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2
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2
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2
1
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ααα
βααααα

β
−+
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4) Calculate iα  values: 

 
[ ]

[ ]
[ ]
[ ]22

2
31

2
21

21
1

664.2096.1497

664.20974.30612.1174

74.30656.7536.1471

74.30656.7536.1471

βα

βαβα

βαβα

βαβα
α

−−+

−++

++−

+−−
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[ ]
[ ]
[ ]22

2
31

2
21

31
2

664.2096.1497

664.20974.30612.1174

74.30656.7536.1471

]664.20974.30612.1174[

βα

βαβα

βαβα

βαβα
α

−−+

−++

++−

−+−
=  (5) 

 

 
[ ]

[ ]
[ ]
[ ]22

2
31

2
21

2
3

664.2096.1497

664.20974.30612.1174

74.30656.7536.1471

664.2096.1497

βα

βαβα

βαβα

βα
α

−−+

−++

++−

−−−
=  (6) 

 

5) Start iteration with a guess for :,,, 321 αααβ and  

Let 58.0333.0;58.0333.0 321 ==−=−== ααα  

and let 3=β  

The iterations are summarized in Table 1.1.4.2.  The reliability index β  
changes very little between iterations 4 and 5, so the solution has 
converged.  The final 285.2=β .  By comparing with the approximated 
reliability index 303.2=β  in example 1.1.3.2.1, the approximated β  of 
2.303 is close to the actual β  of 2.285. 
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Table 1.1.4.2 Integrations for Example 1.5.2.1 

Iteration β  1α  2α  3α  
1 
2 
3 
4 
5 

2.667 
2.324 
2.290 
2.285 
2.285 

-0.6759 
-0.7187 
-0.7162 
-0.7124 
-0.7115 

-0.1742 
-0.1083 
-0.1540 
-0.1650 
-0.1674 

0.7161 
0.6869 
0.6806 
0.6821 
0.6825 

 

The Hasofer-Lind reliability index iteration technique described here is 
mainly for the normal random variables with nonlinear limit state function.  
If some of the random variables are not normal random variables, a 
procedure call “Rackwitz-Fiessler” procedure can be used to calculate 
the “equivalent normal” values of the mean and standard deviation for 
each non normal random variable.  Once the equivalent normal 
parameters have been calculated, the basic steps in the iteration 
procedure are the same as those in the Hasofer-Lind iteration technique.  
The details of Rackwitz-Fiessler procedure are not described in here. 
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1.1.5 Monte Carlo Simulation 
In Section 1.1.4, the probability of safety (reliability) of a structural 
member is evaluated by the reliability index.  It is very difficult to perform 
reliability analysis of a member with consideration of complicated 
nonlinear (inelastic) behavior by using reliability index technique.  The 
probabilistic problems involving complicated nonlinear behavior of a 
member can be solved by Monte Carlo Simulation. 

The Monte Carlo Simulation is a technique to artificially simulate a large 
number of data without doing any physical testing, and then observe the 
number of times some event of interest occurs.  To generate the artificial 
sample data, certain probability distribution of the important parameters 
need to be known first. 

5.1 Generation of Normal Random Numbers 
Since the normal probability distribution plays an important role in the 
structural reliability analysis, it is important to generate normal random 
numbers by Monte Carlo Simulation.  The steps of simulating normal 
random numbers are shown as follows. 

Step 1 – Generation of Uniform Distributed Random Number: 

Most mathematical computer programs have random number generators 
for generating uniform distributed random number as described in 
Section 1.1.2.3. 

Table 1.1.5.1 gives a short list of random numbers with values between 0 
and 1. 

Table 1.1.5.1 – Generated Uniform Distributed Random Numbers 

0.050203 
0.619129 
0.872402 
0.376568 
0.139927 
0.318491 
0.987671 
0.033265 
0.234626 
0.623157 
0.957884 
0.518906 
0.442305 
0.445845 
0.834284 
0.811213 
0.935728 
0.450423 
0.579058 
0.662648 
0.039918 
0.414075 
0.103214 
0.112308 
0.821833 

0.269082 
0.472640 
0.422864 
0.467299 
0.415784 
0.523667 
0.243629 
0.741569 
0.408673 
0.021790 
0.547472 
0.749779 
0.681600 
0.140538 
0.888607 
0.105136 
0.067202 
0.864772 
0.363628 
0.863948 
0.858242 
0.432234 
0.412091 
0.749199 
0.260933 

0.442000 
0.833705 
0.412275 
0.145451 
0.849178 
0.598193 
0.561388 
0.169408 
0.967040 
0.864834 
0.332286 
0.849239 
0.834803 
0.885769 
0.359783 
0.607227 
0.705435 
0.841975 
0.784091 
0.491226 
0.557054 
0.934263 
0.087985 
0.242988 
0.012574 
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Step 2 – Generation of Standard Normal Random Numbers: 

To generate a set of standard normal random numbers ,,..., 21 nzzz  a 

corresponding set of uniform distributed random numbers nuuu ,..., 21  

between 0 and 1 need to be generated first.  For each ,iu  the 

corresponding iz  is 

 ( )ii uz 1−Φ=  (1) 

where 1−Φ  is the inverse of the standard normal cumulative distribution 
function.  Equation (1) can be graphically explained by Figure 1.1.5.1. 

 
Figure 1.1.5.1 Generation of Standard Normal Random Numbers 
 
Step 3 – Generation of Normal Random Numbers: 

Let a normally distributed random variable X  with mean Xµ  and 

standard deviation ,Xσ  then from section 1.1.2.2, 

 XX ZX σµ +=  (2) 
or 
 XiXi zx σµ +=  (3) 
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Therefore a random value ix  can be obtained by using a generated 

standard random number iz  described in step 2. 
 
Example 1.1.5.1: Using Monte Carlo Simulation technique, find the 
probability of failure of a girder shown in example 1.1.3.1.1.  The girder is 
subjected to a concentrated dead load, ,P and a dead load, .DL   The 

moment capacity of the girder is .RM   The statistical parameter of DL , 

,P  and RM  are  

 

( ) ( )
( ) ( )

( ) ( )feetkfeetk

kipskips
feetkfeetk

RR MM

PP

DLDL

−=−=

==
==

144;1200

045.0;3.0
16.0;6.1

σµ

σµ
σµ

 

Solution: From example 1.1.3.1.1 the demand moment at center of the 
girder is 

 
( )( ) ( ) ( )PDLPLLDLM 25.1312.351

48

2

+=+=  

the limit state function is 
 ( ) ( )PDLMMMY RR 25.1312.351 −−=−=  (1) 

For simplicity, use only 5 values of the RM , 5 values of DL and 5 
values of the P using Monte Carlo Simulation.  From table 1.1.5.1, the 
first 5 uniform random numbers will be used to calculate five values of 

RM , the second 5 uniform random numbers will be used to calculate 
values  of DL , and the third 5 uniform random numbers will be used to 
calculate five values of P .  The simulated values of RM , DL , and P  
are summarized in Table 1.1.5.2. 

Table 1.1.5.2 Simulation for RM , DL , and P  

iu  iz  iRi zM 1441200 +=  
0.0502 
0.6191 
0.8724 
0.3765 
0.1300 

-1.6429 
0.3032 
1.1378 
-0.3145 
-1.0806 

963.42 
1243.66 
1363.84 
1154.71 
1044.39 

iu  iz  ii zDL 16.06.1 +=  
0.31849 
0.9877 
0.03326 
0.2346 
0.6231 

-0.4719 
2.2467 
-1.8348 
-0.7237 
0.3138 

1.5245 
1.9595 
1.3064 
1.4842 
1.6502 

iu  iz  ii zP 045.03.0 +=  
0.9579 
0.5189 
0.4423 
0.4458 
0.8343 

1.727 
0.05 

-0.145 
-0.135 
0.97 

0.3777 
0.3023 
0.2935 
0.2939 
0.03436 
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From Table 1.1.5.2, 5 generated values of Y are 

 ( ) ( )PDLMY R 25.1312.351 −−=  

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

51.464
68.629
25.901
635.551
133.423

 

The sample mean and sample standard deviation can be obtained using 
equations (4) and (5) in Section 1.1.2.2. 

 ( )∑
=

−===
5

1
)(04.594198.2970

5
11

i
iY feetky

n
µ  

( )
)(3.189

4
61.176441771.1907860

15

5 2
5

1

2

feetk
y Y

i
i

Y −=
−

=
−

−⎟
⎠

⎞
⎜
⎝

⎛

=
∑
=

µ
σ

Thus, the probability of failure of the girder is 

 ( ) ( ) 41045.814.3
0

0 −×=−Φ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ=<

Y

YYP
σ
µ

 

Comparing with the theoretical feetkY −= 23.634µ  and 

( )feetkY −= 57.154σ  in example 1.1.3.1.1, it can be seen that Yµ  

and Yσ  by Monte Carlo Simulation are not close to the theoretical Yµ  

and Yσ  respectively.  It is because only 5 sample values are used in the 
example.  The accuracy of the Monte Carlo Simulation increases as the 
number of sample values increases. 
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1.1.6 Statistical Load Models 
Loads considered in bridge design are dead load, live load (static and 
dynamic), environmental loads (temperature, wind, earthquake) and 
other loads (collision, braking, etc.).  The statistical load models are 
developed using the available statistical data and surveys.  Loads are 
treated as random variables.  Their variation is described by the 
cumulative distributions function (CDF), mean value and coefficient of 
variation.  The relationship among various load parameters is described 
in terms of the coefficients of correlations. 

It is assumed that the economic life span for a newly designed bridge is 
75 years.  Therefore extreme values of live load and environmental loads 
are extrapolated accordingly from the available data base described as 
follows: 

6.1 Dead Load 
Dead load, D , is the gravity load due to self weight of structural and 
nonstructural elements.  Dead loads can be categorized as follow: 

1D  = weight of factory made elements (steel, precast concrete 
members), 

2D  = weight of cast-in-place concrete members, 

3D  = weight of the wearing surface (asphalt), 

4D  = miscellaneous weight (e.g. railing, luminaries). 
 

41 ~ DD  are modeled as normal random variables.  The statistical 
parameters developed are listed in Table 1.1.6.1.  In the table, bias 
factor is defined as the ratio of mean value to the nominal value.  As 
mentioned previously, the CDF of each random variable 

),,( 4321 DorDDD  is generated by statistical data and/or surveys.  
The CDF can be expressed in terms of standard normal probability 
paper.  Figure 1.1.6.1 shows the probability paper of 3D .  It shows that 

the mean value )(µ is about 1 and the mean plus a standard deviation 
)( σµ +  is 1.25, which leads to the coefficient of variation 

25.0
1
25.0

===
µ
σV  as shown in Table 1.1.6.1 

 
Table 1.1.6.1 Statistical Parameters of Dead Load 

Component Bias Factor Coefficient of Variation 
Factory-made members 
Cast-in-Place members 
Asphalt 
Miscellaneous 

1.03 
1.05 

3.5 inch* 
1.03-1.05 

0.08 
0.10 
0.25 

0.08-0.10 
*mean thickness 



LRFD Bridge Design Guidelines 
Introduction – Section 1.1  Page: 6.1-2 

Statistical Load Models

New: June 2001  LRFD_DG001 

 
Figure 1.1.6.1 Cumulative Distribution Functions of Asphalt 
Thickness 
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6.2 Live Load 
The statistical live load model is mainly based on the available truck 
survey data.  About 10,000 selected trucks being heavily loaded were 
measured.  Even though 10,000 trucks are considered, it is a very small 
amount compared to the actual number of heavy vehicles in a 75 year 
bridge life time.  Therefore, the maximum load effects corresponding to a 
75 year life are calculated by extrapolation of available truck survey data.  
For each truck in the survey, bending moments, M , and shear forces, 
V , are calculated for a wide range of spans.  Simple spans and two 
equal continuous spans are considered.  The moments and shears are 
calculated in terms of the standard HS20 truck or lane loading, 
whichever governs.  Typical continuous spans are plotted on normal 
probability paper in Figure 1.1.6.2.  The maximum moments for various 
time periods are extrapolated from figure 1.1.6.2 and shown in Figure 
1.1.6.3.  Similar probability paper for the maximum shears for various 
time periods can also be generated. 

 

Let N  be the total number of trucks in time period, T .  Assume the 
surveyed trucks represent about two weeks of traffic.  Therefore, if 

75=T years, the number of trucks, N , will be about 2,000 times larger 
than in the survey.  This will result in 20=N  million trucks.  The 
probability level corresponding to N is N/1 , and for 20=N  million, 
the probability is 8105000,000,20/1 −×= , which corresponds to 

33.5=Z  on the vertical scale, as shown in Figure 1.1.6.3. 

 

The mean maximum moments corresponding to various periods of time 
can be read from the graph. For example, for a 120’ span and 75=T  
years, the mean maximum moment is 1.2*(HS20 moment).  The number 
of trucks passing through the bridge in 5 years is about 1,500,000.  This 
corresponds to 83.4=z  on the vertical scale, and the resulting moment 
is 1.15* (HS20 moment).  Similar calculations can be performed for other 
periods of time.  The difference between the mean maximum 50 year 
moment and the mean maximum 75 year moment is about 1%. 

To predict the mean and standard deviation for truck moments (or 
shears) in the time period of 75 years, first find the average probability of 
truck moments (or shears), fP , which exceed the nominal moment (or 
shear) capacities of the bridges in the period of 2 weeks of surveying 
time (For example, 86.410−=fP ).  Then the predicted probability of truck 
moments (or shears) which exceed the nominal moment (or shear) 
capacities is assumed to be: 

 

025.010180010
2

41275

86.486.4 =×=×

××
=

−−

weeks
monthsweeksyearmonthsyearsPf  



LRFD Bridge Design Guidelines 
Introduction – Section 1.1  Page: 6.2-2 

Statistical Load Models

New: June 2001  LRFD_DG001 

The PDF of 75 years can then be estimated by shifting the original PDF 
based on two weeks to the right (see Figure 1.1.6.3B) to meet 

025.0=fP  and assuming the mean value of the PDF in 75 years is 

equal to the mean maximum moment (or shear) in 75 years from the 
probability paper in Figure 1.1.6.3.  Thus the coefficient of variation for 
the maximum truck moments (or shears) in 75 years can be obtained by 
converting the PDF of 75 years to the corresponding probability paper. 

 
 

Figure 1.1.6.2 Negative Moments from Truck Survey for Two Equal 
Continuous Spans. 
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Figure 1.1.6.3 Extrapolated Negative Moments for Two Equal 

Continuous Spans. 
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Figure 1.1.6.3B PDF of the maximum truck moments in 75 years. 
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6.3 LRFD HL-93 Design Live Load 
The objective in the selection of the live load model for the LRFD bridge 
design code is a uniform ratio of the nominal (design) moments (or 
shears) and the mean maximum 75 year moments (or shears) as 
described in Section 1.1.6.2.  Various live load models were considered.  
For the considered models, the ratios of moments and shears were 
calculated for a wide range of spans.  Good results were obtained for a 
model (called HL-93 design live load) which combines the HS20 truck 
with a uniformly distributed load of 640 lb/ft.  For shorter spans, a tandem 
of two equal axles, each 25 kips, spaced at 4 ft, also combined with a 
uniform load of 640 lb/ft, is specified.  For negative moment in 
continuous spans, the HL-93 design live load (per lane) is the larger of: 

 

(a) One HS20 truck plus a uniformly distributed loading of 640 lb/ft, 

(b)  90% of the effect of two HS20 truck, placed in two different spans, 
with headway distance of at least 50 ft, plus 90% of the uniformly 
distributed loading of 640 lb/ft.  The headway distance, 50 ft, 
corresponds to the minimum value for moving vehicles. 

 

The HL-93 design live load is shown in Figure 1.1.6.4.  The mean-to-
nominal ratio (bias factor) of live load is equal to the ratio of the mean 
maximum 75 year load effect (described in Section 1.1.6.2) and the 
design value.  The calculated bias factors for HS20 loading and the HL-
93 loading are shown in Figure 1.1.6.5 for negative moment in 
Continuous Spans.  It can be seen that the bias factor varies as a 
function of span, however, the variation is reduced for the HL-93 live 
load. 
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(a) Truck and Uniform Load 

 
(b) Tandem and Uniform Load 

 
(c) Alternative Load for Negative Moment (reduce to 90%) 

 
Figure 1.1.6.4 HL-93 Design Live Load in LRFD Code 
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Figure 1.1.6.5 Bias Factors for Negative Moment; Ratio of 
Mn(75)/Mn(HL-93) and Mn(75)/Mn(HS20). 
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6.4 Load Combinations 
For each load component, iQ , if a factored load value, niiQγ , is defined, 
for example, as not being exceeded 2.5% of the load component in 75 
years, the factored load niiQγ  can be shown in the following probability 

density function iQ  (Figure 1.1.6.6).  Now the statistical parameters for 

individual probability density function, iQ , such as dead load or live load 
can be obtained as described in Section 1.1.6.1 and 1.1.6.2, 
respectively. 

 

Figure 1.1.6.6 Probability density function, Qif , of load, iQ ; mean 

load, Qµ , nominal (design) load, niQ , and factored load, niiQγ . 

In the figure, the shaded area is equal to the probability of exceeding the 
factored load value. 

From Figure 1.1.6.6, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=

Q

QniiQ
σ

µγ
025.0  

k
Q

Q

Qnii ==
−

2
σ

µγ
 (from Table 1.1.4.1) 

QQnii kQ σµγ =−  

QQnii kQ σµγ +=  
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 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

Q

Q
Q k

µ
σ

µ 1  

 ( )QQ kV+= 1µ  

Therefore the load factor ( )Q
ni

Q
i kV

Q
+= 1

µ
γ  

( )Qi kV+= 1λ  when iλ = bias factor (mean load to nominal load ratio). 

Note that the statistical parameters for individual probability density 
function, Qif , such as dead load or live load can be calculated through 
the processes described in Section 1.1.6.1 and 1.1.6.2, respectively.  
These parameters of load components are summarized in Table 1.1.6.2. 

Various sets of load factors, corresponding to different values of k, are 
presented in Table 1.1.6.3.  The relationship is also shown in Figure 
1.1.6.7. 

Recommended values of load factors correspond to k = 2.  For simplicity 
of the designer, one factor is specified for 1D  and .25.1,2 =γD   For 

3D , weight of asphalt, .50.1=γ   For live load and impact, the value of 

load factor corresponding to k = 2 is .60.1=γ   Although a more 
conservative value of 70.1=γ is proposed for the LRFD code, 75.1=γ    
is chosen in the current LRFD code.  In a similar matter, other load 
factors can be derived (such as wind load on structure). 

 
Table 1.1.6.2 Parameters of Bridge Load Components. 
Load Component Bias Factor Coefficient of Variation 
Dead load, D1 
Dead load, D2 

Dead load, D3 

Live load (with impact) 

1.03 
1.05 
1.00 

1.10-1.20 

0.08 
0.10 
0.25 
0.18 

 
Table 1.1.6.3 Considered Sets of Load Factors. 
Load Component k = 1.5 k = 2.0 k = 2.5 
Dead load, D1 
Dead load, D2 

Dead load, D3 

Live load (with impact) 

1.15 
1.20 
1.375 

1.40-1.50 

1.20 
1.25 
1.50 

1.50-1.60 

1.24 
1.30 
1.65 

1.60-1.70 
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Figure 1.1.6.7 Load Factors vs. k . 

 
The total load in a bridge is a joint effect of dead load D , live load plus 
impact IL + , environmental loads E  (wind, snow, ice, earthquake, 
earth pressure, water pressure), and other loads A  (collision forces, 
braking forces, etc.). 
 

AEILDQ ++++= )(     (1) 

 
The distribution of the joint effects is based on the so called Turkstra’s 
rule.  Turkstra observed that a combination of several load components 
reaches its extreme when one of the components takes an extreme 
value and all other components are at their average (arbitrary-point-in-
time) level.  For example, the combination of live load with earthquake 
produces a maximum effect for the lifetime T , when either, 
 

1.  Earthquake takes its maximum expected value for T  and 
live load takes its maximum expected value corresponding to 
the duration of earthquake (about 30 seconds), or 

2. Live load takes its maximum expected value for T  and 
earthquake takes its maximum expected value 
corresponding to duration of this maximum live load (time of 
truck passage on the bridge). 

 
In practice, the expected value of an earthquake in any short time 
interval is almost zero.  The expected value of truck load for a short time 
interval depends on the class of the road.  For a very busy highway it is 
likely that there is some traffic at any point in time.  Therefore, the 
maximum earthquake may occur simultaneously with an average truck 
passing through the bridge. 

In the general case, Turkstra’s rule can be expressed as follows, 

 iQQ max(max) =  for i = 1, 2, 3 and 4 (2) 

Where: 
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(max))())(()(
)((max)))(()(
)()()(max)()(
)()())(((max)

4

3

2

1

AaveEaveILaveDQ
aveAEaveILaveDQ
aveAaveEILaveDQ
aveAaveEaveILDQ

++++=
++++=
++++=
++++=

 

In all cases, the average load value is calculated for the period of time 
corresponding to the duration of the maximum load.  The formula can be 
extended to include various components of D , E , and A .  Since dead 
load does not vary with time, the maximum and average values are the 
same. 
 
The probability of an earthquake EQ  or heavy wind W , occurring in a 
short period of time is very small.  Therefore, simultaneous occurrence of 
EQ  and W  is not considered.  As a result, the number of load 
combinations considered in the code can be reduced as follows, 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

+

+=

max

4

max;
max )(

max)(

max

EQ
WIL

W
IL

DQ
dailyhour

  (3) 

where =+ max)( IL maximum 75 year =++ hourILIL 4)();(  

maximum 4 hour =+ max);( WIL maximum 75 year wind; =dailyW  

maximum daily wind; =maxEQ maximum 75 year earthquake. 

 
For example, the mean maximum 4 hour live load moment for span 
length of 200’, hourIL 4)( + , can be read directly from figure 1.1.6.2 for 

58.2=z  (maximum of 200 trucks, so the probability level is 

005.0
200
1

= , which corresponds to 58.2=z  (see Table 1.1.4.1)).  

Form figure 1.1.6.2, the maximum 4 hour live load moment is about 
(0.7)(HS20 moment).  From Figure 1.1.6.3, the maximum 75 year live 
load moment is about (0.9)(HS20 moment). 

Therefore, if the load factors for the first load combination are: 

 )(70.125.1 ILD ++  (4) 

and for the second one they are, 

 WD 40.125.1 +  (5) 

then for the third combination, the load factors are, 

 WILD 45.0)(35.125.1 +++  (6) 
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where live load factor ( ) 35.132.1)70.1)(778.0(70.1
9.0
7.0

≈==⎟
⎠
⎞

⎜
⎝
⎛=  

(mean maximum 4 hour truck is about 0.77 of the mean maximum 75 
year truck); wind load factor 46.0)4.1)(33.0( ==  (mean maximum 
daily wind is 0.33 of the mean maximum 75 year wind).  Based on eq. 
(6), AASHTO LRFD Codes adopts the load combination for STRENGTH-
V limit state as  
 WILD 40.0)(35.125.1 +++     (7) 
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1.1.7 Statistical Resistance Models 
Although the capacity (resistance) of a member is treated deterministic in 
the Load Factor Design (LFD), in reality there is some uncertainty 
associated with the material strength, member cross-sectional 
dimensions.  Therefore, the resistance, R , is also a random variable.  
The cause of uncertainty can be put into three categories:  

Material – strength of material, elastic modulus, cracking stress, etc. 

Fabrication – geometry, dimensions, etc. 

Analysis – approximate analytical method, idealized stress and strain 
distribution models. 

Usually, the variability of the resistance of components has been 
quantified by tests, observations of existing bridges and by engineering 
judgment.  Most of this information is available for the basic structural 
material and components such as statistical data for concrete or steel 
stress-strain curves, concrete or steel elastic modulus, or steel I-section 
hot-rolled members.  However, structural members are often made of 
several materials such as R/C or P/S girders.  Since the test data on the 
resistance of such composite members is not always available, it is often 
necessary to develop statistical resistance models using available 
material test data and numerical Simulation (such as Monte Carlo 
Simulation).  The resistance model R  is to consider the resistance as a 
product of the nominal resistance, nR , used in design and three 
parameters that account for the uncertainty of material strength factor 
M , fabrication (dimensions) factor F , and analysis (professional) factor 
P . 

 MFPRR n=  (1) 

Therefore the statistical parameters of a resistance model are 

 PFMnR R µµµµ =  (2) 

and  

 ( ) 2
1222

PFMR VVVV ++=  (3) 

where ,, FM µµ  and Pµ  are the mean values of M, F, and P 
respectively.  ,, FM VV  and PV  are the coefficients of variation of M, F, 
and P, respectively.  ,,,,, FMPFM VVµµµ  and PV  were developed for 
steel girders with composite and non-composite, reinforced concrete T-
beams, and prestressed concrete AASHTO-type girders and are 
available in the literature. 

A typical statistical moment capacity model of composite AASHTO type 3 
P/S I-Girder is shown in Figure 1.1.7.1.  The typical stress-strain curves 
for concrete, prestressing strand were used.  In the analysis, the curves 
were generated by Monte Carlo Simulations.  The long-term strength 
changes of the concrete and steel are ignored in the analysis. 
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Figure 1.1.7.1 Moment – Curvature Curves for Type III AASHTO 
Composite Girder 

The statistical parameters of resistance for steel girders, reinforced 
concrete T-beams and prestressed concrete girders are shown in Table 
1.1.7.1. 
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Table 1.1.7.1 Statistical Parameters Resistance 

FM  P  R  Type of Structure 
λ  V  λ  V  λ  V  

Non-Composite Steel Girders 
Moment (compact) 
Moment (non-com.) 
Shear 

1.095 
1.085 
1.12 

0.075 
0.075 
0.08 

1.02 
1.03 
1.02 

0.06 
0.06 
0.07 

1.12 
1.12 
1.14 

0.10 
0.10 
0.105 

Composite Steel Girders 
Moment 
Shear 

1.07 
1.12 

0.08 
0.08 

1.05 
1.02 

0.06 
0.07 

1.12 
1.14 

0.10 
0.105 

Reinforced Concrete 
Moment 
Shear W/Steel 
Shear No Steel 

1.12 
1.13 
1.165 

0.12 
0.12 

0.135 

1.02 
1.075 

1.2 

0.06 
0.10 
0.10 

1.14 
1.20 
1.40 

0.13 
0.155 
0.17 

Prestressed Concrete 
Moment 
Shear W/Steel 

1.04 
1.07 

0.045 
0.10 

1.01 
1.075 

0.06 
0.10 

1.05 
1.15 

0.075 
0.14 
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1.1.8 Reliability Index For Current AASHTO Standard Specification 
In order to develop the LRFD codes, a target reliability index needs to be 
determined.  To determine the target reliability index, a set of bridges 
were selected.  The selected set includes about 200 representative 
existing bridges in different geographical locations in the U.S.  For the 
selected bridges, moments and shears of girders are calculated due to 
dead loads and live loads.  The basic design requirement according to 
AASHTO Standard Specification is 

 ( ) nRILD φ=++ 17.23.1  (1) 

where D , L , and I  are moments (or shears) due to nominal dead 
load, live load and impact using current AASHTO.  nR  is the required 

resistance and φ  is the resistance factors based on the AASHTO 

Standard Specifications.  The required resistance, nR , is calculated as 

 
( )

φ
ILDRn

++
=

17.23.1
 (2) 

Once nR  is calculated, the mean and standard deviation (i.e., Qµ  and 

Qσ ) are calculated for the total load effect based on the statistical 
parameters of individual load effects as shown in Table 1.1.6.2.  The 
mean and standard deviation of resistance (i.e., Rµ  and Rσ ) can be 

obtained from nR  and Table 1.1.7.1.  By knowing statistical parameters 

of load and resistance effects of Q  and R , the reliability index, β , can 
be calculated according to Section 1.1.4.2.  After calculating the reliability 
index for all the bridges in the selected bridge set.  The target reliability 
index was selected by AASHTO to be 3.5 for moments and shears. 

The reliability indices of moment and shear based on AASHTO Standard 
Specifications for steel girders are shown in Figures 1.1.8.1 and 1.1.8.2, 
respectively.  Similarly, the reliability indices of moment and shear for 
prestressed I-Girders are shown in Figures 1.1.8.3 and 1.1.8.4, it can be 
seen that the reliability indices vary significantly when the girder spacing 
or the span length is changed.  It indicates that a uniform safety level for 
various spans and girder spacing is not achieved if bridges are designed 
by the AASHTO Standard Specifications. 
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Figure 1.1.8.1 Reliability Indices for Current AASHTO; Simple Span 
Moment in Composite Steel Girders. 

 
Figure 1.1.8.2 Reliability Indices for Current AASHTO; Shear in Steel 
Girders. 
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Figure 1.1.8.3 Reliability Indices for Current AASHTO; Simple Span 
Moment in Prestressed Concrete Girders. 

 
Figure 1.1.8.4 Reliability Indices for Current AASHTO; Shear in 
Prestressed Concrete Girders.  
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1.1.9 Calibration of Load and Resistance Factors 
The LRFD Code objective was to minimize the discrepancy between the 
reliability index of designed bridges and the target index 5.3=Tβ .  The 
reliability indexes below the target value of 3.5 are generally not 
acceptable.  The bridges chosen for the calibration include steel girder 
bridges (composite and non composite), reinforced concrete bridges (T 
beams) and prestressed concrete bridges (AASHTO girders).  The span 
range is from 30 ft to 200 ft and girder spacing range is from 4 ft to 12 ft. 

The recommended load factors of dead loads and live load described in 
Section 1.1.6.4 are used for the calibration.  In the selection of the 
resistance factors, the acceptance criteria is closeness to the target 
value of the reliability index, 5.3=Tβ .  Various set of resistance 
factors, φ , are considered.  Resistance factors used in the code are 
rounded off to the nearest 0.05.  For each value of φ , the minimum 

required resistance, LRFDR , is determined from the following equation, 

 ( ) ( )[ ] φILDDDRLRFD ++++= 70.15.125.1 321  (1) 

For a given resistance factor, material, span and girder spacing, a value 
of LRFDR  is calculated using equation (1).  Then, for each value of 

LRFDR  and corresponding loads, the reliability index is computed based 
on Section 1.1.4.  The calculations shown that the reliability indices for 
bridges designed by the LRFD code do not depend on girder spacing 
(i.e. the change of reliability index due to change of girder spacing is very 
minimum).  The reliability indices of moment and shear based on LRFD 
Code for steel girders are shown in Figures 1.1.9.1 and 1.1.9.2 
respectively.  The reliability indices of moment and shear for prestressed 
I-Girder are shown in Figures 1.1.9.3 and 1.1.9.4, respectively.  From the 
calibration, the recommended resistance factors for the LRFD code are 
shown in Table 1.1.9.1. 

Table 1.1.9.1 Recommended Resistance Factors. 

Material Limit State Resistance Factor, φ  
Moment 1.00 Non-Composite Steel 
Shear 1.00 

Moment 1.00 Composite Steel 
Shear 1.00 

Moment 0.90 Reinforced Concrete 
Shear 0.90 

Moment 1.00 Prestressed Concrete 
Shear 0.90 
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Figure 1.1.9.1 Reliability Indices for LRFD Code, Simple Span 
Moments in Composite Steel Girders. 

 
Figure 1.1.9.2 Reliability Indices for LRFD Code, Simple Span 
Shears in Steel Girders. 
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Figure 1.1.9.3 Reliability Indices for LRFD Code, Simple Span 
Moments in Prestressed Concrete Girders. 

 
Figure 1.1.9.4 Reliability Indices for LRFD Code, Simple Span 
Shears in Prestressed Concrete Girders. 

 

From Figures 1.1.9.1 through 1.1.9.4, it can be seen that the LRFD Code 
results in a considerably reduced scatter of β  values by comparing with 
Figures 1.1.8.1 through 1.1.8.4, and more uniform reliability is achieved.  
For easier comparison with the current AASHTO Standard 
Specifications, a resistance ratio, r , is defined as 

 20HSLRFD RRr =  (2) 

Equation (2) is a measure of the actual changes of the code 
requirements.  Value of 1>r  corresponds to LRFD Code being more 
conservative than the current AASHTO Standard Specifications, and 

1<r  corresponds to LRFD being less conservative than the current 
AASHTO Standard Specification.  Figures 1.1.9.5 and 1.1.9.6 shows the 
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moment and shear resistance ratios for steel girders, respectively.  
Similarly, the moment and shear resistance ratios for P/S I-Girders are 
shown in Figures 1.1.9.7 and 1.1.9.8, respectively.  In general, LRFD is 
less conservative for the resistance moment when girder spacing 
increases.  It is more conservative for the resistance shear regardless of 
the girder spacing when span length is greater than 60’ for steel girder 
bridges.  It is also more conservative for the resistance shear regardless 
of the girder spacing and span length for prestressed I-girder bridges. 

 

Figure 1.1.9.5 Resistance Ratios, ,20HSLRFD RRr =  for Simple Span 
Moment, Composite Steel Girder Bridges for Girder Spacing s = 4, 
6, 8, 10, and 12 ft. 

 

Figure 1.1.9.6 Resistance Ratios, ,20HSLRFD RRr =  for Simple Span 
Shear, Steel Girder Bridges, for Girder Spacing s = 4, 6, 8, 10, and 
12 ft. 
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Figure 1.1.9.7 Resistance Ratios, ,20HSLRFD RRr =  for Simple Span 
Moment, Prestressed Concrete Girder Bridges, for Girder Spacing s 
= 4, 6, 8, 10, and 12 ft. 

 

Figure 1.1.9.8 Resistance Ratios, ,20HSLRFD RRr =  for Simple Span 
Shears, Prestressed Concrete Girder Bridges, for Girder Spacing s 
= 4, 6, 8, 10, and 12 ft. 
 


	HOME
	Title Page
	Index  Jan. 2005
	1.1.1 Design Philosophy
	1.1-1 Allowable Stress Design (ASD)
	1.1-1 Jan. 2005

	1.2 Load Factor Design (LFD)
	1.2-1 Jan. 2005

	1.3-1 Load and Resistance Factor Design (LRFD)
	1.3-1 Jan. 2005


	1.1.2 Fundamental Probility Theory
	2.1-1 Definitions
	2.1-1 Jan. 2005
	2.1-2 Jan. 2005
	2.1-3 Jan. 2005
	2.1-4 Jan. 2005

	2.2-1 Statistic Parameters
	2.2-1 Jan. 2005
	2.2-2 JAn. 2005

	2.3-1 Common Random Variables
	2.3-1 Jan. 2005
	2.3-2 Jan. 2005
	2.3-3 Jan. 2005
	2.3-4 Jan. 2005
	2.3-5 Jan. 2005

	2.4-1 Normal Probability Paper
	2.4-1 Jan. 2005
	2.4-2 Jan. 2005
	2.4-3 Jan. 2005
	2.4-4 Jan. 2005


	1.1.3 Applications of Random Variables
	3.1-1 Linear Functions of Random Variables
	3.1-1 Jan. 2005
	3.1-2 Jan. 2005
	3.1-3 Jan. 2005

	3.2-1 Nonlinear Functions of Random Variables
	3.2-1Jan. 2005
	3.2-2 Jan. 2005
	3.2-3 Jan. 2005


	1.1.4 Structural Reliability Analysis
	4.1-1 Probability of Failure
	4.1-1 Jan. 2005
	4.1-2 Jan. 2005

	4.2-1 Safety (Reliability) Index
	4.2-1 Jan. 2005
	4.2-2 Jan. 2005
	4.2-3 Jan. 2005
	4.2-4 Jan. 2005
	4.2-5 Jan. 2005
	4.2-6 Jan. 2005
	4.2-7 Jan. 2005
	4.2-8 JAn. 2005


	1.1.5 Monte Carlo Simulation
	5.1-1 Generation of Normal Random Numbers
	5.1-1 Jan. 2005
	5.1-2 Jan. 2005
	5.1-3 Jan. 2005
	5.1-4 Jan. 2005



	1.1.6 Statistical Load Models
	6.1-1 Dead Load
	6.1-1 Jan. 2005
	6.1-2 Jan. 2005

	6.2-1 Live Load
	6.2-1 Jan. 2005
	6.2-2 Jan. 2005
	6.2-3 Jan. 2005
	6.2-4 Jan. 2005

	6.3-1 LRFD HL-93 Live Load
	6.3-1 Jan. 2005
	6.3-2 Jan. 2005
	6.3-3 Jan. 2005

	6.4-1 Load Combinations 
	6.4-1 Jan. 2005
	6.4-2 Jan. 2005
	6.4-3 Jan. 2005
	6.4-4 Jan. 2005
	6.4-5 Jan. 2005


	1.1.7 Statistical Resistance Models
	7.1-1 Jan. 2005
	7.1-2 Jan. 2005
	7.1-3 Jan. 2005

	1.1.8 Reliability Index For Current AASHTO
	8.1-1 Jan.2005
	8.1-2 Jan. 2005
	8.1-3 Jan. 2005

	1.1.9 Calibration of Load And Resistance Factors
	9.1-1 Jan. 2005
	9.1-2 Jan. 2005
	9.1-3 Jan. 2005
	9.1-4 Jan. 2005
	9.1-5 Jan. 2005




